Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one

نویسنده

  • D. Chiron
چکیده

We study the stability/instability of the subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one. Our aim is to propose several methods for showing instability (use of the GrillakisShatah-Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For the later, we show how to construct in a systematic way a Liapounov functional for which the travelling wave is a local minimizer. These approaches allow to give a complete stability/instability analysis in the energy space including the critical case of the kink solution. We also treat the case of a cusp in the energy-momentum diagram. Key-words: travelling wave, Nonlinear Schrödinger Equation, Gross-Pitaevskii Equation, stability, Evans function, Liapounov functional. MSC (2010): 35B35, 35C07, 35J20, 35Q40, 35Q55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Instability of Travelling Solitonic Bubbles

We study the nonlinear Schrödinger equation with general nonlinearity of competing type. This equation have travelling waves with nonvanishing condition at infinity in one dimension. We give a sharp condition for the stability and instability of these solutions. This justifies the previous prediction posed in physical literature.

متن کامل

Stability of small periodic waves for the nonlinear Schrödinger equation

The nonlinear Schrödinger equation possesses three distinct six-parameter families of complexvalued quasi-periodic travelling waves, one in the defocusing case and two in the focusing case. All these solutions have the property that their modulus is a periodic function of x−ct for some c ∈ R. In this paper we investigate the stability of the small amplitude travelling waves, both in the defocus...

متن کامل

Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity

We study the stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity obtained via a constrained variational approach. Two important physical models are Gross-Pitaevskii (GP) equation and cubic-quintic equation. First, under a non-degeneracy condition we prove a sharp instability criterion for 3D traveling waves of (GP), which had been conjectured in the...

متن کامل

Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit

We investigate the properties of finite energy travelling waves to the nonlinear Schrödinger equation with nonzero conditions at infinity for a wide class of nonlinearities. In space dimension two and three we prove that travelling waves converge in the transonic limit (up to rescaling) to ground states of the Kadomtsev-Petviashvili equation. Our results generalize an earlier result of F. Béthu...

متن کامل

Modulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons

  Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013